数学公式

时间:2023-05-10 02:13:42编辑:奇闻君

知识点:数学公式收集:任反且 编辑:百合仙子
本知识点包括:1、八年级下册数学公式 2、六十甲子的数学公式 3、小学数学公式大全 4、小学数学全部公式 5、数学求根公式是什么? 。


《数学公式》相关知识

小学数学图形计算公式

1 、正方形 C周长 S面积 a边长 周长=边长×4 C=4a 面积=边长×边长 S=a×a

2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长 V=a×a×a

3 、长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 、长方体

V:体积 s:面积 a:长 b: 宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6 平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数

(和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数

小数×倍数=大数

(或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数

小数×倍数=大数

(或 小数+差=大数)

植树问题

1 非封闭线路上的植树问题主要可分为以下三种情形:

⑴如果在非封闭线路的两端都要植树,那么:

株数=段数+1=全长÷株距-1

全长=株距×(株数-1)

株距=全长÷(株数-1)

⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

⑶如果在非封闭线路的两端都不要植树,那么:

株数=段数-1=全长÷株距-1

全长=株距×(株数+1)

株距=全长÷(株数+1)

2 封闭线路上的植树问题的数量关系如下

株数=段数=全长÷株距

全长=株距×株数

株距=全长÷株数

盈亏问题

(盈+亏)÷两次分配量之差=参加分配的份数

(大盈-小盈)÷两次分配量之差=参加分配的份数

(大亏-小亏)÷两次分配量之差=参加分配的份数

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

追及问题

追及距离=速度差×追及时间

追及时间=追及距离÷速度差

速度差=追及距离÷追及时间

流水问题

顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度

静水速度=(顺流速度+逆流速度)÷2

水流速度=(顺流速度-逆流速度)÷2

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

折扣=实际售价÷原售价×100%(折扣<1)

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

长度单位换算

1千米=1000米 1米=10分米

1分米=10厘米 1米=100厘米

1厘米=10毫米

面积单位换算

1平方千米=100公顷

1公顷=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

重量单位换算

1吨=1000 千克

1千克=1000克

1千克=1公斤

人民币单位换算

1元=10角

1角=10分

1元=100分

时间单位换算

1世纪=100年 1年=12月

大月(31天)有:1\3\5\7\8\10\12月

小月(30天)的有:4\6\9\11月

平年2月28天, 闰年2月29天

平年全年365天, 闰年全年366天

1日=24小时 1时=60分

1分=60秒 1时=3600秒

小学数学几何形体周长 面积 体积计算公式

1、长方形的周长=(长+宽)×2 C=(a+b)×2

2、正方形的周长=边长×4 C=4a

3、长方形的面积=长×宽 S=ab

4、正方形的面积=边长×边长 S=a.a= a

5、三角形的面积=底×高÷2 S=ah÷2

6、平行四边形的面积=底×高 S=ah

7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2

8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2

9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr

高中 常用的诱导公式有以下几组:

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

诱导公式记忆口诀

※规律总结※

上面这些诱导公式可以概括为:

对于k·π/2±α(k∈Z)的个三角函数值,

①当k是偶数时,得到α的同名函数值,即函数名不改变;

②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇变偶不变)

然后在前面加上把α看成锐角时原函数值的符号.

(符号看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα.

当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”.

所以sin(2π-α)=-sinα

上述的记忆口诀是:

奇变偶不变,符号看象限.

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函数值的符号可记忆

水平诱导名不变;符号看象限.

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”.

这十二字口诀的意思就是说:

第一象限内任何一个角的四种三角函数值都是“+”;

第二象限内只有正弦是“+”,其余全部是“-”;

第三象限内只有正切是“+”,其余全部是“-”;

第四象限内只有余弦是“+”,其余全部是“-”.

上述记忆口诀,一全正,二正弦,三正切,四余弦

其他三角函数知识:

同角三角函数基本关系

⒈同角三角函数的基本关系式

倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

六角形记忆法:(参看图片或参考资料链接)

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型.

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积.

(主要是两条虚线两端的三角函数值的乘积).由此,可得商数关系式.

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方.

两角和差公式

⒉两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

倍角公式

⒊二倍角的正弦、余弦和正切公式(升幂缩角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/(1-tan^2(α))

半角公式

⒋半角的正弦、余弦和正切公式(降幂扩角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

万能公式

⒌万能公式

sinα=2tan(α/2)/(1+tan^2(α/2))

cosα=(1-tan^2(α/2))/(1+tan^2(α/2))

tanα=(2tan(α/2))/(1-tan^2(α/2))

万能公式推导

附推导:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)).*,

(因为cos^2(α)+sin^2(α)=1)

再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然后用α/2代替α即可.

同理可推导余弦的万能公式.正切的万能公式可通过正弦比余弦得到.

三倍角公式

⒍三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

三倍角公式推导

附推导:

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^2(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式联想记忆

记忆方法:谐音、联想

正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”))

余弦三倍角:4元3角 减 3元(减完之后还有“余”)

☆☆注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示.

和差化积公式

⒎三角函数的和差化积公式

sinα+sinβ=2sin((α+β/2)) ·cos((α-β)/2)

sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)

cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)

cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)

积化和差公式

⒏三角函数的积化和差公式

sinα ·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα ·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα ·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα ·sinβ=- 0.5[cos(α+β)-cos(α-β)]

和差化积公式推导

附推导:

首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和差的四个公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.

我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

知识拓展:

1:【小学的数学公式】


知识要点归纳:

常用的数量关系式

1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数

2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数

3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度

4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价

5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率

6、加数+加数=和 和-一个加数=另一个加数

7、被减数-减数=差 被减数-差=减数 差+减数=被减数

8、因数×因数=积 积÷一个因数=另一个因数

9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数

小学数学图形计算公式

1、正方形 (C:周长 S:面积 a:边长 )

周长=边长×4 C=4a

面积=边长×边长 S=a×a

2、正方体 (V:体积 a:棱长 )

表面积=棱长×棱长×6 S表=a×a×6

体积=棱长×棱长×棱长 V=a×a×a

3、长方形( C:周长 S:面积 a:边长 )

周长=(长+宽)×2 C=2(a+b)

面积=长×宽 S=ab

4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)

(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

(2)体积=长×宽×高 V=abh

5、三角形 (s:面积 a:底 h:高)

面积=底×高÷2 s=ah÷2

三角形高=面积 ×2÷底 三角形底=面积 ×2÷高

6、平行四边形 (s:面积 a:底 h:高)

面积=底×高 s=ah

7、梯形 (s:面积 a:上底 b:下底 h:高)

面积=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圆形 (S:面积 C:周长 л d=直径 r=半径)

(1)周长=直径×л=2×л×半径 C=лd=2лr

(2)面积=半径×半径×л

9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长)

(1)侧面积=底面周长×高=ch(2лr或лd) (2)表面积=侧面积+底面积×2

(3)体积=底面积×高 (4)体积=侧面积÷2×半径

10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径)

体积=底面积×高÷3

总数÷总份数=平均数

和差问题的公式

(和+差)÷2=大数 (和-差)÷2=小数

和倍问题

和÷(倍数-1)=小数 小数×倍数=大数 (或者 和-小数=大数)

差倍问题

差÷(倍数-1)=小数 小数×倍数=大数 (或 小数+差=大数)

相遇问题

相遇路程=速度和×相遇时间

相遇时间=相遇路程÷速度和

速度和=相遇路程÷相遇时间

浓度问题

溶质的重量+溶剂的重量=溶液的重量

溶质的重量÷溶液的重量×100%=浓度

溶液的重量×浓度=溶质的重量

溶质的重量÷浓度=溶液的重量

利润与折扣问题

利润=售出价-成本

利润率=利润÷成本×100%=(售出价÷成本-1)×100%

涨跌金额=本金×涨跌百分比

利息=本金×利率×时间

税后利息=本金×利率×时间×(1-20%)

常用单位换算

长度单位换算

1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米

面积单位换算

1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=100平方毫米

体(容)积单位换算

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升

1立方厘米=1毫升 1立方米=1000升

重量单位换算

1吨=1000 千克 1千克=1000克 1千克=1公斤

人民币单位换算

1元=10角 1角=10分 1元=100分

时间单位换算

1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月

平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时

1时=60分 1分=60秒 1时=3600秒

比和比例

1比的意义和性质

(1) 比的意义

两个数相除又叫做两个数的比.

“:”是比号,读作“比”.比号前面的数叫做比的前项,比号后面的数叫做比的后项.比的前项除以后项所得的商,叫做比值.

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商.

比值通常用分数表示,也可以用小数表示,有时也可能是整数.

比的后项不能是零.

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值.

(2)比的性质

比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质.

(3) 求比值和化简比

求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数.

根据比的基本性质可以把比化成最简单的整数比.它的结果必须是一个最简比,即前、后项是互质的数.

(4)比例尺

图上距离:实际距离=比例尺

要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离.

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离.

(5)按比例分配

在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配.这种分配的方法通常叫做按比例分配.

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少.

2 比例的意义和性质

(1) 比例的意义

表示两个比相等的式子叫做比例.

组成比例的四个数,叫做比例的项.

两端的两项叫做外项,中间的两项叫做内项.

(2)比例的性质

在比例里,两个外项的积等于两个两个内向的积.这叫做比例的基本性质.

(3)解比例

根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项.求比例中的未知项,叫做解比例.

3 正比例和反比例

(1) 成正比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系.

用字母表示y/x=k(一定)

(2)成反比例的量

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系.

用字母表示x×y=k(一定)

统计

一 统计表

(一)意义

* 把统计数据填写在一定格式的表格内,用来反映情况、说明问题,这样的表格就叫做统计表.

(二)组成部分

* 一般分为表格外和表格内两部分.表格外部分包括标的名称,单位说明和制表日期;表格内部包括表头、横标目、纵标目和数据四个方面.

(三)种类

* 单式统计表:只含有一个项目的统计表.

* 复式统计表:含有两个或两个以上统计项目的统计表.

* 百分数统计表:不仅表明各统计项目的具体数量,而且表明比较量相当于标准量的百分比的统计表.

(四)制作步骤

1搜集数据

2整理数据:

要根据制表的目的和统计的内容,对数据进行分类.

3设计草表:

要根据统计的目的和内容设计分栏格内容、分栏格画法,规定横栏、竖栏各需几格,每格长度.

4 正式制表:

把核对过的数据填入表中,并根据制表要求,用简单、明确的语言写上统计表的名称和制表日期.

二 统计图

(一)意义

* 用点线面积等来表示相关的量之间的数量关系的图形叫做统计图.

(二)分类

1 条形统计图

用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来.

优点:很容易看出各种数量的多少.

注意:画条形统计图时,直条的宽窄必须相同.

取一个单位长度表示数量的多少要根据具体情况而确定;

复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开,并在制图日期下面注明图例.

制作条形统计图的一般步骤:

(1)根据图纸的大小,画出两条互相垂直的射线.

(2)在水平射线上,适当分配条形的位置,确定直线的宽度和间隔.

(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少.

(4)按照数据的大小画出长短不同的直条,并注明数量.

2 折线统计图

用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来.

优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况.

注意:折线统计图的横轴表示不同的年份、月份等时间时,不同时间之间的距离要根据年份或月份的间隔来确定.

制作折线统计图的一般步骤:

(1)根据图纸的大小,画出两条互相垂直的射线.

(2)在水平射线上,适当分配折线的位置,确定直线的宽度和间隔.

(3)在与水平射线垂直的深线上根据数据大小的具体情况,确定单位长度表示多少.

(4)按照数据的大小描出各点,再用线段顺次连接起来,并注明数量.

3扇形统计图

用整个圆的面积表示总数,用扇形面积表示各部分所占总数的百分数.

优点:很清楚地表示出各部分同总数之间的关系.

制扇形统计图的一般步骤:

(1)先算出各部分数量占总量的百分之几.

(2)再算出表示各部分数量的扇形的圆心角度数.

(3)取适当的半径画一个圆,并按照上面算出的圆心角的度数,在圆里画出各个扇形.

(4)在每个扇形中标明所表示的各部分数量名称和所占的百分数,并用不同颜色或条纹把各个扇形区别开.

2:S=-100*k^(n-1)*80%这个公式中^是什么意思.


知识要点归纳:

“次方”在电脑上的标示方法.即K的n-1次方.

3:小学数学公式有哪些?


知识要点归纳:

1 正方形

C周长 S面积 a边长

周长=边长×4

C=4a

面积=边长×边长

S=a×a

2 正方体

V:体积 a:棱长

表面积=棱长×棱长×6

S表=a×a×6

体积=棱长×棱长×棱长

V=a×a×a

3 长方形

C周长 S面积 a边长

周长=(长+宽)×2

C=2(a+b)

面积=长×宽

S=ab

4 长方体

V:体积 s:面积 a:长 b:宽 h:高

(1)表面积(长×宽+长×高+宽×高)×2

S=2(ab+ah+bh)

(2)体积=长×宽×高

V=abh

5 三角形

s面积 a底 h高

面积=底×高÷2

s=ah÷2

三角形高=面积 ×2÷底

三角形底=面积 ×2÷高

6 平行四边形

s面积 a底 h高

面积=底×高

s=ah

7 梯形

s面积 a上底 b下底 h高

面积=(上底+下底)×高÷2

s=(a+b)× h÷2

8 圆形

S面积 C周长 ∏ d=直径 r=半径

(1)周长=直径×∏=2×∏×半径

C=∏d=2∏r

(2)面积=半径×半径×∏

9 圆柱体

v:体积 h:高 s;底面积 r:底面半径 c:底面周长

(1)侧面积=底面周长×高

(2)表面积=侧面积+底面积×2

(3)体积=底面积×高

(4)体积=侧面积÷2×半径

10 圆锥体

v:体积 h:高 s;底面积 r:底面半径

体积=底面积×高÷3

1 每份数×份数=总数

总数÷每份数=份数

总数÷份数=每份数

2 1倍数×倍数=几倍数

几倍数÷1倍数=倍数

几倍数÷倍数=1倍数

3面积=边长×边长

S=a×a速度×时间=路程

路程÷速度=时间

路程÷时间=速度

4 单价×数量=总价

总价÷单价=数量

总价÷数量=单价

5 工作效率×工作时间=工作总量

工作总量÷工作效率=工作时间

工作总量÷工作时间=工作效率

6 加数+加数=和

和-一个加数=另一个加数

7 被减数-减数=差

被减数-差=减数

差+减数=被减数

8 因数×因数=积

积÷一个因数=另一个因数

9 被除数÷除数=商

被除数÷商=除数

商×除数=被除数

楼数=层数+( 1 ) 层数=楼数-( 1 )

4:高中的重点数学公式有哪些?


知识要点归纳:

...建议去买本步步高高频考点随身记,小小薄薄的只有公式,里面很全,没事的时候或者做题的时候也可以翻翻,如果基础差建议回到课本重新看一遍公式推导

5:关于一个数学公式第一年是55,第二年是55+55*(1+27.64%),第三年是【55+55*(1+27.64%)】+【55+55*(1+27.64%)】*(1+27.64%),第四年.这个我记得以前上学的时候学过的可以用F(X)=佘格马什么的,有明白


知识要点归纳:

你这个和数列那部分有点像,和银行利率的那部分好像有点关系.不明白您要求什么,根据您的描述可以得到第n年应该是前n-1年的和乘以(1+27.64%),即an=Sn-1*(1+27.64%)

猜你喜欢:

1:八年级下册数学公式

提示:你是哪儿的 是八时半的 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一...

2:六十甲子的数学公式

提示:1、六十甲子序数计算公式: 设:a为天干的序数,b为地支的序数,c为所求的六十甲子序数(甲子为1); c=[(a+10-b)mod10]÷2×12+b 例:求“己酉”在六十甲子中排第几位,分析可知a=6,b=10; c=[(6+10-10)mod10]÷2×12+10 =46 西南院读者新解: c=6a-5b+...

3:小学数学公式大全

提示:小学数学公式大全 一、小学数学几何形体周长 面积 体积计算公式 长方形的周长=(长+宽)×2 C=(a+b)×2 正方形的周长=边长×4 C=4a 长方形的面积=长×宽 S=ab 正方形的面积=边长×边长 S=a.a= a 三角形的面积=底×高÷2 S=ah÷2 平行四边形的面积=底×高 ...

4:小学数学全部公式

提示:1 、正方形 C:周长 S:面积 a:边长 周长=边长×4 C=4a 面积=边 2 、正方体 V:体积 L: 棱长和 (1)棱长和=棱长×12 L=12a (2)表面积=棱长×棱长×6 S表=a×a×6 (3) 体积=棱长×棱长×棱长 V=a×a×a 3 、长方形 C:周长 S:面积 a:长 b: 宽 周长=(长+宽)...

5:数学求根公式是什么?

提示:求根公式如下: a为二次项系数,b为一次项系数,c是常数。 一元二次ax^2 +bx+c=0可用求根公式x= 求解,它是由方程系数直接把根表示出来的公式。这个公式早在公元9世纪由中亚细亚的阿尔·花拉子模给出。 拓展资料: 南宋数学家秦九韶至晚在1247 年...

上一篇:泰坦尼克号沉船之谜

下一篇:lol攻击符文怎么配,lolS8ADAP新版符文系统通用怎么搭配